Marvel: A Data-Centric Approach for Mapping Deep Learning Operators on Spatial Accelerators
A spatial accelerator’s efficiency depends heavily on both its mapper and cost models to generate optimized mappings for various operators of DNN models. However, existing cost models lack a formal boundary over their input programs (operators) for accurate and tractable cost analysis of the mappings, and this results in adaptability challenges to the cost models for new operators. We consider the recently introduced Maestro Data-Centric (MDC) notation and its analytical cost model to address this challenge because any mapping expressed in the notation is precisely analyzable using the MDC’s cost model.
In this article, we characterize the set of input operators and their mappings expressed in the MDC notation by introducing a set of conformability rules. The outcome of these rules is that any loop nest that is perfectly nested with affine tensor subscripts and without conditionals is conformable to the MDC notation. A majority of the primitive operators in deep learning are such loop nests. In addition, our rules enable us to automatically translate a mapping expressed in the loop nest form to MDC notation and use the MDC’s cost model to guide upstream mappers. Our conformability rules over the input operators result in a structured mapping space of the operators, which enables us to introduce a mapper based on our decoupled off-chip/on-chip approach to accelerate mapping space exploration. Our mapper decomposes the original higher-dimensional mapping space of operators into two lower-dimensional off-chip and on-chip subspaces and then optimizes the off-chip subspace followed by the on-chip subspace. We implemented our overall approach in a tool called Marvel, and a benefit of our approach is that it applies to any operator conformable with the MDC notation. We evaluated Marvel over major DNN operators and compared it with past optimizers.
Publication Date
External Links
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.