GPU/ML-Enhanced Large Scale Global Routing Contest
Modern VLSI design flows demand scalable global routing techniques applicable across diverse design stages. In response, the ISPD 2024 contest pioneers the first GPU/ML-enhanced global routing competition, selecting advancements in GPU-accelerated computing platforms and machine learning techniques to address scalability challenges. Large-scale benchmarks, containing up to 50 million cells, offer test cases to assess global routers' runtime and memory scalability. The contest provides simplified input/output formats and performance metrics, framing global routing challenges as mathematical optimization problems and encouraging diverse participation. Two sets of evaluation metrics are introduced: the primary one concentrates on global routing applications to guide post-placement optimization and detailed routing, focusing on congestion resolution and runtime scalability. Special honor is given based on the second set of metrics, placing additional emphasis on runtime efficiency and aiming at guiding early-stage planning.
Publication Date
Published in
Research Area
External Links
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.