Co-Designing Accelerators and SoC Interfaces Using gem5-Aladdin

Increasing demand for power-efficient, high- performance computing has spurred a growing number and diversity of hardware accelerators in mobile and server Systems on Chip (SoCs). This paper makes the case that the co-design of the accelerator microarchitecture with the system in which it belongs is critical to balanced, efficient accelerator microarchitectures. We find that data movement and coherence management for accelerators are significant yet often unaccounted components of total accelerator runtime, resulting in misleading performance predictions and inefficient accelerator designs. To explore the design space of accelerator-system co-design, we develop gem5-Aladdin, an SoC simulator that captures dynamic interactions between accelerators and the SoC platform, and validate it to within 6% against real hardware. Our co-design studies show that the optimal energy-delay-product (EDP) of an accelerator microarchitecture can improve by up to 7.4× when system-level effects are considered compared to optimizing accelerators in isolation.
Publication Date
Published in
Research Area
External Links
Uploaded Files
Copyright
This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.