Efficient Incoherent Ray Traversal on GPUs Through Compressed Wide BVHs
We present a GPU-based ray traversal algorithm that operates on compressed wide BVHs and maintains the traversal stack in a compressed format. Our method reduces the amount of memory traffic significantly, which translates to 1.9-2.1x improvement in incoherent ray traversal performance compared to the current state of the art. Furthermore, the memory consumption of our hierarchy is 35-60% of a typical uncompressed BVH.
In addition, we present an algorithmically efficient method for converting a binary BVH into a wide BVH in a SAH-optimal fashion, and an improved method for ordering the child nodes at build time for the purposes of octant-aware fixed-order traversal.
Publication Date
Published in
Research Area
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.