Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion
We present a machine learning technique for driving 3D facial animation by audio input in real time and with low latency. Our deep neural network learns a mapping from input waveforms to the 3D vertex coordinates of a face model, and simultaneously discovers a compact, latent code that disambiguates the variations in facial expression that cannot be explained by the audio alone. During inference, the latent code can be used as an intuitive control for the emotional state of the face puppet.
We train our network with 3-5 minutes of high-quality animation data obtained using traditional, vision-based performance capture methods. Even though our primary goal is to model the speaking style of a single actor, our model yields reasonable results even when driven with audio from other speakers with different gender, accent, or language, as we demonstrate with a user study. The results are applicable to in-game dialogue, low-cost localization, virtual reality avatars, and telepresence.
Publication Date
Published in
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.