BYOC: A "Bring Your Own Core" Framework for Heterogeneous-ISA Research
Heterogeneous architectures and heterogeneous-ISA designs are growing areas of computer architecture and system software research. Unfortunately, this line of research is significantly hindered by the lack of experimental systems and modifiable hardware frameworks. This work proposes BYOC, a "Bring Your Own Core" framework that is specifically designed to enable heterogeneous-ISA and heterogeneous system research. BYOC is an open-source hardware framework that provides a scalable cache coherence system, that includes out-of-the-box support for four different ISAs (RISCV 32-bit, RISC-V 64-bit, x86, and SPARCv9) and has been connected to ten different cores. The framework also supports multiple loosely coupled accelerators and is a fully working system supporting SMP Linux. The Transaction-Response Interface (TRI) introduced with BYOC has been specifically designed to make it easy to add in new cores with new ISAs and memory interfaces. This work demonstrates multiple multi-ISA designs running on FPGA and characterises the communication costs. This work describes many of the architectural design trade-offs for building such a flexible system. BYOC is well suited to be the premiere platform for heterogeneous-ISA architecture, system software, and compiler research.
Publication Date
Research Area
External Links
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.