Joint Neural Denoising of Surfaces and Volumes
Abstract
Denoisers designed for surface geometry rely on noise-free feature guides for high quality results. However, these guides are not readily available for volumes. Our method enables combined volume and surface denoising in real time from low sample count (4 spp) renderings. The rendered image is decomposed into volume and surface layers, leveraging spatio-temporal neural denoisers for both components. The individual signals are composited using learned weights and denoised transmittance. Our architecture outperforms current denoisers in scenes containing both surfaces and volumes, and produces temporally stable results at interactive rates.
Publication Date
Published in
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.