Fast ANN for High-Quality Collaborative Filtering
Collaborative filtering collects similar patches, jointly filters them, and scatters the output back to input patches; each pixel gets a contribution from each patch that overlaps with it, allowing signal reconstruction from highly corrupted data. Exploiting self-similarity, however, requires finding matching image patches, which is an expensive operation. We propose a GPU-friendly approximated-nearest-neighbor algorithm that produces high-quality results for any type of collaborative filter. We evaluate our ANN search against state-of-the-art ANN algorithms in several application domains. Our method is orders of magnitudes faster, yet provides similar or higher-quality results than the previous work.
Publication Date
Published in
Research Area
External Links
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.