Anatomy of GPU Memory System for Multi-Application Execution
As GPUs make headway in the computing landscape spanning mobile platforms, supercomputers, cloud and virtual desktop platforms, supporting concurrent execution of multiple applications in GPUs becomes essential for unlocking their full potential. However, unlike CPUs, multi-application execution in GPUs is little explored. In this paper, we study the memory system of GPUs in a concurrently executing multi-application environment. We first present an analytical performance model for many-threaded architectures and show that the common use of misses-per-kilo-instruction (MPKI) as a proxy for performance is not accurate without considering the bandwidth usage of applications. We characterize the memory interference of applications and discuss the limitations of existing memory schedulers in mitigating this interference. We extend the analytical model to multiple applications and identify the key metrics to control various performance metrics. We conduct extensive simulations using an enhanced version of GPGPU-Sim targeted for concurrently executing multiple applications, and show that memory scheduling decisions based on MPKI and bandwidth information are more effective in enhancing throughput compared to the traditional FR-FCFS and the recently proposed RR FR-FCFS policies.
Publication Date
Published in
Research Area
External Links
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.