vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design.
The most widely used machine learning frameworks require users to carefully tune their memory usage so that the deep neural network (DNN) fits into the DRAM capacity of a GPU. This restriction hampers a researcher’s flexibility to study different machine learning algorithms, forcing them to either use a less desirable network architecture or parallelize the processing across multiple GPUs. We propose a runtime memory manager that virtualizes the memory usage of DNNs such that both GPU and CPU memory can simultaneously be utilized for training larger DNNs. Our virtualized DNN (vDNN) reduces the average GPU memory usage of AlexNet by up to 89%, OverFeat by 91%, and GoogLeNet by 95%, a significant reduction in memory requirements of DNNs. Similar experiments on VGG-16, one of the deepest and memory hungry DNNs to date, demonstrate the memory-efficiency of our proposal. vDNN enables VGG-16 with batch size 256 (requiring 28 GB of memory) to be trained on a single NVIDIA Titan X GPU card containing 12 GB of memory, with 18% performance loss compared to a hypothetical, oracular GPU with enough memory to hold the entire DNN.
Publication Date
Published in
External Links
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.