Automated Synthesis of Comprehensive Memory Model Litmus Test Suites
The memory consistency model is a fundamental part of any shared memory architecture or programming model. Modern weak memory models are notoriously difficult to define and to implement correctly. Most real-world programming languages, compilers, and (micro)architectures therefore rely heavily on black-box testing methodologies. The success of such techniques requires that the suite of litmus tests used to perform the testing be comprehensive—it should ideally stress all obscure corner cases of the model and of its implementation. Most litmus test suites today are generated from some combination of manual effort and randomization; however, the complex and subtle nature of contemporary memory models means that manual effort is both error-prone and subject to incomplete coverage. This paper presents a methodology for synthesizing comprehensive litmus test suites directly from a memory model specification. By construction, these suites contain all tests satisfying a minimality criterion: that no synchronization mechanism in the test can be weakened without causing new behaviors to become observable. We formalize this notion using the Alloy modeling language, and we apply it to a number of existing and newly-proposed memory models. Our results show not only that this synthesis technique can automatically reproduce all manually-generated tests from existing suites, but also that it discovers new tests that are not as well studied.
Publication Date
External Links
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.