Near-Eye Varifocal Augmented Reality Display using See-Through Screens
We present a new optical design for see-through near-eye displays that is simple, compact, varifocal, and provides a wide field of view with clear peripheral vision and large eyebox. Key to this effort is a novel see-through rear-projection screen. We project an image to the see-through screen using an off-axis path, which is then relayed to the user’s eyes through an on-axis partially-reflective magnifying surface. Converting the off-axis path to a compact on-axis imaging path simplifies the optical design. We establish fundamental trade-offs between the quantitative parameters of resolution, field of view, and the form-factor of our design. We demonstrate a wearable binocular near-eye display using off-the-shelf projection displays, custom- designed see-through spherical concave mirrors, and see-through screen designs using either custom holographic optical elements or polarization- selective diffusers.
Publication Date
Published in
Research Area
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.