Few-Shot Adaptive Gaze Estimation
Inter-personal anatomical differences limit the accuracy of person-independent gaze estimation networks. Yet there is a need to lower gaze errors further to enable applications requiring higher quality. Further gains can be achieved by personalizing gaze networks, ideally with few calibration samples. However, over-parameterized neural networks are not amenable to learning from few examples as they can quickly over-fit. We embrace these challenges and propose a novel framework for Few-shot Adaptive GaZE Estimation (FAZE) for learning person-specific gaze networks with very few ( 9) calibration samples. FAZE learns a rotation aware latent representation of gaze via a disentangling encoder-decoder architecture along with a highly adaptable gaze estimator trained using meta-learning. It is capable of adapting to any new person to yield significant performance gains with as few as 3 samples, yielding state-of-the art performance of 3:18 on GazeCapture, a 19% improvement over prior art. We open-source our code at https://github.com/NVlabs/few_shot_gaze.
Publication Date
External Links
Uploaded Files
Award
Copyright
This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.