Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs
With Moore’s law slowing down and Dennard scaling ended, energy-efficient domain-specific accelerators, such as deep neural network (DNN) processors for machine learning and programmable network switches for cloud applications, have become a promising way for hardware designers to continue bringing energy efficiency improvements to data and computation-intensive applications. To ensure the fast exploration of the accelerator design space, architecture-level energy estimators, which perform energy estimations without requiring complete hardware description of the designs, are critical to designers. However, it is difficult to use existing architecture-level energy estimators to obtain accurate estimates for accelerator designs, as accelerator designs are diverse and sensitive to data patterns. This paper presents Accelergy, a generally applicable energy estimation methodology for accelerators that allows design specifications comprised of user-defined high-level compound components and user-defined low-level primitive components, which can be characterized by third-party energy estimation plug-ins. An example with primitive and compound components for DNN accelerator designs is also provided as an application of the proposed methodology. Overall, Accelergy achieves 95% accuracy on Eyeriss, a well-known DNN accelerator design, and can correctly capture the energy breakdown of components at different granularities. The Accelergy code is available at http://accelergy.mit.edu.
Publication Date
Research Area
External Links
Uploaded Files
Copyright
This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.