How to Evaluate Deep Neural Network Processors: TOPS/W (Alone) Considered Harmful
A significant amount of specialized hardware has been developed for processing deep neural networks (DNNs) in both academia and industry. This article aims to highlight the key concepts required to evaluate and compare these DNN processors. We discuss existing challenges, such as the flexibility and scalability needed to support a wide range of neural networks, as well as design considerations for both the DNN processors and the DNN models themselves. We also describe specific metrics that can be used to evaluate and compare existing solutions beyond the commonly used tera-operations per second per watt (TOPS/W). This article is based on the tutorial "How to Understand and Evaluate Deep Learning Processors" that was given at the 2020 International Solid-State Circuits Conference, as well as excerpts from the book, Efficient Processing of Deep Neural Networks.
Publication Date
Published in
Research Area
External Links
Copyright
This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.