P-OPT: Practical Optimal Cache Replacement for Graph Analytics
Graph analytics is an important workload that achieves suboptimal performance due to poor cache locality. State-of-the-art cache replacement policies fail to capture the highly dynamic and input-specific reuse patterns of graph application data. The main insight of this work is that for graph applications, the transpose of a graph succinctly represents the next references of all vertices in a graph execution; enabling an efficient emulation of Belady's MIN replacement policy. In this work, we propose P-OPT, an architecture solution that uses a specialized compressed representation of a transpose's next reference information to enable a practical implementation of Belady's MIN replacement policy. Our evaluations across multiple applications and inputs reveal that P-OPT improves cache locality for graph applications providing an average performance improvement of 33% (56% maximum) over LRU replacement.
Publication Date
Research Area
External Links
Uploaded Files
Award
Copyright
This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.