An Unbiased Ray-Marching Transmittance Estimator
We present an in-depth analysis of the sources of variance in state-of-the-art unbiased volumetric transmittance estimators, and propose several new methods for improving their efficiency. These combine to produce a single estimator that is universally optimal relative to prior work, with up to several orders of magnitude lower variance at the same cost, and has zero variance for any ray with non-varying extinction. We first reduce the variance of truncated power-series estimators using a novel efficient application of U-statistics. We then greatly reduce the average expansion order of the power series and redistribute density evaluations to filter the optical depth estimates with an equidistant sampling comb. Combined with the use of an online control variate built from a sampled mean density estimate, the resulting estimator effectively performs ray marching most of the time while using rarely-sampled higher order terms to correct the bias.
Publication Date
Published in
Research Area
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.