Graph Learning-Based Arithmetic Block Identification
Arithmetic block identification in gate-level netlist is an essential procedure for malicious logic detection, functional verification, or macro-block optimization. We argue that existing methods suffer either scalability or performance issues. To address the problem, we propose a graph learning-based solution that promises to extract desired logic components from a complete design netlist. We further design a novel asynchronous bidirectional graph neural network (ABGNN) dedicated to representation learning on directed acyclic graphs. Experimental results on open-source RISC-V CPU designs demonstrate that our proposed solution significantly outperforms several state-of-the-art arithmetic block identification flows.
Publication Date
External Links
Uploaded Files
Copyright
This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.