AutoDMP: Automated DREAMPlace-based Macro Placement

Macro placement is a critical very large-scale integration (VLSI) physical design problem that significantly impacts the design powerperformance-area (PPA) metrics. This paper proposes AutoDMP, a methodology that leverages DREAMPlace, a GPU-accelerated placer, to place macros and standard cells concurrently in conjunction with automated parameter tuning using a multi-objective hyperparameter optimization technique. As a result, we can generate high-quality predictable solutions, improving the macro placement quality of academic benchmarks compared to baseline results generated from academic and commercial tools. AutoDMP is also computationally efficient, optimizing a design with 2.7 million cells and 320 macros in 3 hours on a single NVIDIA DGX Station A100. This work demonstrates the promise and potential of combining GPU-accelerated algorithms and ML techniques for VLSI design automation

Authors

Anthony Agnesina (NVIDIA)
Puranjay Rajvanshi (NVIDIA)
Tian Yang (NVIDIA)
Geraldo Pradipta (NVIDIA)
Austin Jiao (NVIDIA)

Publication Date

Uploaded Files

paper5.82 MB