GENIE: Higher-Order Denoising Diffusion Solvers

Denoising diffusion models (DDMs) have emerged as a powerful class of generative models. A forward diffusion process slowly perturbs the data, while a deep model learns to gradually denoise. Synthesis amounts to solving a differential equation (DE) defined by the learnt model. Solving the DE requires slow iterative solvers for high-quality generation. In this work, we propose Higher-Order Denoising Diffusion Solvers (GENIE): Based on truncated Taylor methods, we derive a novel higher-order solver that significantly accelerates synthesis.

Variational Amodal Object Completion

In images of complex scenes, objects are often occluding each other which makes perception tasks such as object detection and tracking, or robotic control tasks such as planning, challenging. To facilitate downstream tasks, it is thus important to reason about the full extent of objects, i.e., seeing behind occlusion, typically referred to as amodal instance completion.

Differentially Private Diffusion Models

While modern machine learning models rely on increasingly large training datasets, data is often limited in privacy-sensitive domains. Generative models trained with differential privacy (DP) on sensitive data can sidestep this challenge, providing access to synthetic data instead. We build on the recent success of diffusion models (DMs) and introduce Differentially Private Diffusion Models (DPDMs), which enforce privacy using differentially private stochastic gradient descent (DP-SGD).

DreamTeacher: Pretraining Image Backbones with Deep Generative Models

In this work, we introduce a self-supervised feature representation learning framework DreamTeacher that utilizes generative networks for pre-training downstream image backbones. We propose to distill knowledge from a trained generative model into standard image backbones that have been well engineered for specific perception tasks.

TexFusion: Synthesizing 3D Textures with Text-Guided Image Diffusion Models

We present TexFusion (Texture Diffusion), a new method to synthesize textures for given 3D geometries, using large-scale text-guided image diffusion models. In contrast to recent works that leverage 2D text-to-image diffusion models to distill 3D objects using a slow and fragile optimization process, TexFusion introduces a new 3D-consistent generation technique specifically designed for texture synthesis that employs regular diffusion model sampling on different 2D rendered views.

NeuralField-LDM: Scene Generation with Hierarchical Latent Diffusion Models

Automatically generating high-quality real world 3D scenes is of enormous interest for applications such as virtual reality and robotics simulation. Towards this goal, we introduce NeuralField-LDM, a generative model capable of synthesizing complex 3D environments. We leverage Latent Diffusion Models that have been successfully utilized for efficient high-quality 2D content creation. We first train a scene auto-encoder to express a set of image and pose pairs as a neural field, represented as density and feature voxel grids that can be projected to produce novel views of the scene.

Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models

Latent Diffusion Models (LDMs) enable high-quality image synthesis while avoiding excessive compute demands by training a diffusion model in a compressed lower-dimensional latent space. Here, we apply the LDM paradigm to high-resolution video generation, a particularly resource-intensive task. We first pre-train an LDM on images only; then, we turn the image generator into a video generator by introducing a temporal dimension to the latent space diffusion model and fine-tuning on encoded image sequences, i.e., videos.

Karsten Kreis

Karsten Kreis is a Principal Research Scientist at NVIDIA Research focusing on generative AI.