Learning to Track Instances without Video Annotations

Tracking segmentation masks of multiple instances has been intensively studied, but still faces two fundamental challenges: 1) the requirement of large-scale, frame-wise annotation, and 2) the complexity of two-stage approaches. To resolve these challenges, we introduce a novel semi-supervised framework by learning instance tracking networks with only a labeled image dataset and unlabeled video sequences. With an instance contrastive objective, we learn an embedding to discriminate each instance from the others.

Weakly-Supervised Physically Unconstrained Gaze Estimation

A major challenge for physically unconstrained gaze estimation is acquiring training data with 3D gaze annotations for in-the-wild and outdoor scenarios. In contrast, videos of human interactions in unconstrained environments are abundantly available and can be much more easily annotated with frame-level activity labels. In this work, we tackle the previously unexplored problem of weakly-supervised gaze estimation from videos of human interactions.

Contrastive Syn-to-Real Generalization

Training on synthetic data can be beneficial for label or data-scarce scenarios. However, synthetically trained models often suffer from poor generalization in real domains due to domain gaps. In this work, we make a key observation that the diversity of the learned feature embeddings plays an important role in the generalization performance.

Sim2Val: Leveraging Correlation Across Test Platforms for Variance-Reduced Metric Estimation

Learning-based robotic systems demand rigorous validation to assure reliable performance, but extensive real-world testing is often prohibitively expensive, and if conducted may still yield insufficient data for high-confidence guarantees. In this work we introduce Sim2Val, a general estimation framework that leverages paired data across test platforms, e.g., paired simulation and real-world observations, to achieve better estimates of real-world metrics via the method of control variates.