Learning to Track Instances without Video Annotations

Tracking segmentation masks of multiple instances has been intensively studied, but still faces two fundamental challenges: 1) the requirement of large-scale, frame-wise annotation, and 2) the complexity of two-stage approaches. To resolve these challenges, we introduce a novel semi-supervised framework by learning instance tracking networks with only a labeled image dataset and unlabeled video sequences. With an instance contrastive objective, we learn an embedding to discriminate each instance from the others.

Weakly-Supervised Physically Unconstrained Gaze Estimation

A major challenge for physically unconstrained gaze estimation is acquiring training data with 3D gaze annotations for in-the-wild and outdoor scenarios. In contrast, videos of human interactions in unconstrained environments are abundantly available and can be much more easily annotated with frame-level activity labels. In this work, we tackle the previously unexplored problem of weakly-supervised gaze estimation from videos of human interactions.

Contrastive Syn-to-Real Generalization

Training on synthetic data can be beneficial for label or data-scarce scenarios. However, synthetically trained models often suffer from poor generalization in real domains due to domain gaps. In this work, we make a key observation that the diversity of the learned feature embeddings plays an important role in the generalization performance.

Jasper: An End-to-End Convolutional Neural Acoustic Model

In this paper, we report state-of-the-art results on LibriSpeech among end-to-end speech recognition models without any external training data. Our model, Jasper, uses only 1D convolutions, batch normalization, ReLU, dropout, and residual connections. To improve training, we further introduce a new layer-wise optimizer called NovoGrad. Through experiments, we demonstrate that the proposed deep architecture performs as well or better than more complex choices. Our deepest Jasper variant uses 54 convolutional layers.

QuartzNet: Deep Automatic Speech Recognition with 1D Time-Channel Separable Convolutions

We propose a new end-to-end neural acoustic model for automatic speech recognition. The model is composed of multiple blocks with residual connections between them. Each block consists of one or more modules with 1D time-channel separable convolutional layers, batch normalization, and ReLU layers. It is trained with CTC loss. The proposed network achieves near state-of-the-art accuracy on LibriSpeech and Wall Street Journal, while having fewer parameters than all competing models. We also demonstrate that this model can be effectively fine-tuned on new datasets.

Correction of Automatic Speech Recognition with Transformer Sequence-To-Sequence Model

In this work, we introduce a simple yet efficient post-processing model for automatic speech recognition (ASR). Our model has Transformer-based encoder-decoder architecture which "translates" ASR model output into grammatically and semantically correct text. We investigate different strategies for regularizing and optimizing the model and show that extensive data augmentation and the initialization with pre-trained weights are required to achieve good performance.

MarbleNet: Deep 1D Time-Channel Separable Convolutional Neural Network for Voice Activity Detection

We present MarbleNet, an end-to-end neural network for Voice Activity Detection (VAD). MarbleNet is a deep residual network composed from blocks of 1D time-channel separable convolution, batch-normalization, ReLU and dropout layers. When compared to a state-of-the-art VAD model, MarbleNet is able to achieve similar performance with roughly 1/10-th the parameter cost. We further conduct extensive ablation studies on different training methods and choices of parameters in order to study the robustness of MarbleNet in real-world VAD tasks.

A Fast and Robust BERT-based Dialogue State Tracker for Schema-Guided Dialogue Dataset

Dialog State Tracking (DST) is one of the most crucial modules for goal-oriented dialogue systems. In this paper, we introduce FastSGT (Fast Schema Guided Tracker), a fast and robust BERT-based model for state tracking in goal-oriented dialogue systems. The proposed model is designed for the Schema-Guided Dialogue (SGD) dataset which contains natural language descriptions for all the entities including user intents, services, and slots. The model incorporates two carry-over procedures for handling the extraction of the values not explicitly mentioned in the current user utterance.

SpeakerNet: 1D Depth-wise Separable Convolutional Network for Text-Independent Speaker Recognition and Verification

We propose SpeakerNet - a new neural architecture for speaker recognition and speaker verification tasks. It is composed of residual blocks with 1D depth-wise separable convolutions, batch-normalization, and ReLU layers. This architecture uses x-vector based statistics pooling layer to map variable-length utterances to a fixed-length embedding (q-vector). SpeakerNet-M is a simple lightweight model with just 5M parameters.

Improving Noise Robustness of an End-to-End Neural Model for Automatic Speech Recognition

We present our experiments in training robust to noise an end-to-end automatic speech recognition (ASR) model using intensive data augmentation. We explore the efficacy of fine-tuning a pre-trained model to improve noise robustness, and we find it to be a very efficient way to train for various noisy conditions, especially when the conditions in which the model will be used, are unknown. Starting with a model trained on clean data helps establish baseline performance on clean speech.