Suraksha: A Framework to Analyze the Safety Implications of Perception Design Choices in AVs
Autonomous vehicles (AVs) employ sophisticated computer systems and algorithms to perceive the surroundings, localize, plan, and control the vehicle. With several available design choices for each of the system components, making design decisions without analyzing system-level safety consequences may compromise performance and safety. This paper proposes an automated AV safety evaluation framework called Suraksha to quantify and analyze the sensitivities of different design parameters on AV system safety on a set of driving situations. In this paper, we employ Suraksha to analyze the safety effects of modulating a set of perception parameters (perception being the most resource demanding AV tasks) on an industrial AV system. Results reveal that (a) the perception demands vary with driving scenario difficulty levels; (b) small per-frame inaccuracies and reduced camera processing rate can be traded off for power savings or diversity; (c) tested AV system tolerates up to 10% perception noise and delay even in harder driving scenarios. These results motivate future safety- and performance-aware system optimizations.
Publication Date
Research Area
External Links
Uploaded Files
Copyright
This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.