MarbleNet: Deep 1D Time-Channel Separable Convolutional Neural Network for Voice Activity Detection

We present MarbleNet, an end-to-end neural network for Voice Activity Detection (VAD). MarbleNet is a deep residual network composed from blocks of 1D time-channel separable convolution, batch-normalization, ReLU and dropout layers. When compared to a state-of-the-art VAD model, MarbleNet is able to achieve similar performance with roughly 1/10-th the parameter cost. We further conduct extensive ablation studies on different training methods and choices of parameters in order to study the robustness of MarbleNet in real-world VAD tasks.

A Fast and Robust BERT-based Dialogue State Tracker for Schema-Guided Dialogue Dataset

Dialog State Tracking (DST) is one of the most crucial modules for goal-oriented dialogue systems. In this paper, we introduce FastSGT (Fast Schema Guided Tracker), a fast and robust BERT-based model for state tracking in goal-oriented dialogue systems. The proposed model is designed for the Schema-Guided Dialogue (SGD) dataset which contains natural language descriptions for all the entities including user intents, services, and slots. The model incorporates two carry-over procedures for handling the extraction of the values not explicitly mentioned in the current user utterance.

SpeakerNet: 1D Depth-wise Separable Convolutional Network for Text-Independent Speaker Recognition and Verification

We propose SpeakerNet - a new neural architecture for speaker recognition and speaker verification tasks. It is composed of residual blocks with 1D depth-wise separable convolutions, batch-normalization, and ReLU layers. This architecture uses x-vector based statistics pooling layer to map variable-length utterances to a fixed-length embedding (q-vector). SpeakerNet-M is a simple lightweight model with just 5M parameters.

Improving Noise Robustness of an End-to-End Neural Model for Automatic Speech Recognition

We present our experiments in training robust to noise an end-to-end automatic speech recognition (ASR) model using intensive data augmentation. We explore the efficacy of fine-tuning a pre-trained model to improve noise robustness, and we find it to be a very efficient way to train for various noisy conditions, especially when the conditions in which the model will be used, are unknown. Starting with a model trained on clean data helps establish baseline performance on clean speech.

MatchboxNet - 1D Time-Channel Separable Convolutional Neural Network Architecture for Speech Commands Recognition

We present an MatchboxNet - an end-to-end neural network for speech command recognition. MatchboxNet is a deep residual network composed from blocks of 1D time-channel separable convolution, batch-normalization, ReLU and dropout layers. MatchboxNet reaches state-of-the-art accuracy on the Google Speech Commands dataset while having significantly fewer parameters than similar models. The small footprint of MatchboxNet makes it an attractive candidate for devices with limited computational resources.

BioMegatron: Larger Biomedical Domain Language Model

There has been an influx of biomedical domain-specific language models, showing language models pre-trained on biomedical text perform better on biomedical domain benchmarks than those trained on general domain text corpora such as Wikipedia and Books. Yet, most works do not study the factors affecting each domain language application deeply. Additionally, the study of model size on domain-specific models has been mostly missing.

TalkNet: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis

We propose TalkNet, a non-autoregressive convolutional neural model for speech synthesis with explicit pitch and duration prediction. The model consists of three feed-forward convolutional networks. The first network predicts grapheme durations. An input text is expanded by repeating each symbol according to the predicted duration. The second network predicts pitch value for every mel frame. The third network generates a mel-spectrogram from the expanded text conditioned on predicted pitch. All networks are based on 1D depth-wise separable convolutional architecture.

Citrinet: Closing the Gap between Non-Autoregressive and Autoregressive End-to-End Models for Automatic Speech Recognition

We propose Citrinet - a new end-to-end convolutional Connectionist Temporal Classification (CTC) based automatic speech recognition (ASR) model. Citrinet is deep residual neural model which uses 1D time-channel separable convolutions combined with sub-word encoding and squeeze-and-excitation. The resulting architecture significantly reduces the gap between non-autoregressive and sequence-to-sequence and transducer models. We evaluate Citrinet on LibriSpeech, TED-LIUM2, AISHELL-1 and Multilingual LibriSpeech (MLS) English speech datasets.

TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction

We propose TalkNet, a non-autoregressive convolutional neural model for speech synthesis with explicit pitch and duration prediction. The model consists of three feed-forward convolutional networks. The first network predicts grapheme durations. An input text is expanded by repeating each symbol according to the predicted duration. The second network predicts pitch value for every mel frame. The third network generates a mel-spectrogram from the expanded text conditioned on predicted pitch. All networks are based on 1D depth-wise separable convolutional architecture.

SGD-QA: Fast Schema-Guided Dialogue State Tracking for Unseen Services

Dialogue state tracking is an essential part of goal-oriented dialogue systems, while most of these state tracking models often fail to handle unseen services. In this paper, we propose SGD-QA, a simple and extensible model for schema-guided dialogue state tracking based on a question answering approach. The proposed multi-pass model shares a single encoder between the domain information and dialogue utterance. The domain's description represents the query and the dialogue utterance serves as the context.