A Toolbox for Construction and Analysis of Speech Datasets

Automatic Speech Recognition and Text-to-Speech systems are primarily trained in a supervised fashion and require high-quality, accurately labeled speech datasets. In this work, we examine common problems with speech data and introduce a toolbox for the construction and interactive error analysis of speech datasets. The construction tool is based on Kürzinger et al. work, and, to the best of our knowledge, the dataset exploration tool is the world’s first open-source tool of this kind.

NVIDIA NeMo Neural Machine Translation Systems for English-German and English-Russian News and Biomedical Tasks at WMT21

This paper provides an overview of NVIDIA NeMo's neural machine translation systems for the constrained data track of the WMT21 News and Biomedical Shared Translation Tasks. Our news task submissions for English-German (En-De) and English-Russian (En-Ru) are built on top of a baseline transformer-based sequence-to-sequence model.

Text Mining Drug/Chemical-Protein Interactions using an Ensemble of BERT and T5 Based Models

In Track-1 of the BioCreative VII Challenge participants are asked to identify interactions between drugs/chemicals and proteins. In-context named entity annotations for each drug/chemical and protein are provided and one of fourteen different interactions must be automatically predicted. For this relation extraction task, we attempt both a BERT-based sentence classification approach, and a more novel text-to-text approach using a T5 model.

Shallow Fusion of Weighted Finite-State Transducer and Language Model for Text Normalization

Text normalization (TN) systems in production are largely rule-based using weighted finite-state transducers (WFST). However, WFST-based systems struggle with ambiguous input when the normalized form is context-dependent. On the other hand, neural text normalization systems can take context into account but they suffer from unrecoverable errors and require labeled normalization datasets, which are hard to collect. We propose a new hybrid approach that combines the benefits of rule-based and neural systems.

TitaNet: Neural Model for Speaker Representation with 1D Depth-Wise Separable Convolutions and Global Context

In this paper, we propose TitaNet, a novel neural network architecture for extracting speaker representations. We employ 1D depth-wise separable convolutions with Squeeze-and-Excitation (SE) layers with global context followed by channel attention based statistics pooling layer to map variable-length utterances to a fixed-length embedding (t-vector).

NVIDIA NeMo Offline Speech Translation Systems for IWSLT 2022

This paper provides an overview of NVIDIA NeMo’s speech translation systems for the IWSLT 2022 Offline Speech Translation Task. Our cascade system consists of 1) Conformer RNN-T automatic speech recognition model, 2) punctuation-capitalization model based on pre-trained T5 encoder, 3) ensemble of Transformer neural machine translation models fine-tuned on TED talks. Our end-to-end model has less parameters and consists of Conformer encoder and Transformer decoder.

Finding the Right Recipe for Low Resource Domain Adaptation in Neural Machine Translation

General translation models often still struggle to generate accurate translations in specialized domains. To guide machine translation practitioners and characterize the effectiveness of domain adaptation methods under different data availability scenarios, we conduct an in-depth empirical exploration of monolingual and parallel data approaches to domain adaptation of pre-trained, third-party, NMT models in settings where architecture change is impractical. We compare data centric adaptation methods in isolation and combination.

Thutmose Tagger: Single-pass neural model for Inverse Text Normalization

Inverse text normalization (ITN) is an essential post-processing step in automatic speech recognition (ASR). It converts numbers, dates, abbreviations, and other semiotic classes from the spoken form generated by ASR to their written forms. One can consider ITN as a Machine Translation task and use neural sequence-to-sequence models to solve it. Unfortunately, such neural models are prone to hallucinations that could lead to unacceptable errors. To mitigate this issue, we propose a single-pass token classifier model that regards ITN as a tagging task.

Evaluating Parameter Efficient Learning for Generation

Parameter efficient learning methods (PERMs) have recently gained significant attention as they provide an efficient way for pre-trained language models (PLMs) to adapt to a downstream task. However, these conclusions are mostly drawn from in-domain evaluations over the full training set. In this paper, we present comparisons between PERMs and finetuning from three new perspectives: (1) the effect of sample and model size to in-domain evaluations, (2) generalization to unseen domains and new datasets, and (3) the faithfulness of generations.

A Compact End-to-End Model with Local and Global Context for Spoken Language Identification

We introduce TitaNet-LID, a compact end-to-end neural network for Spoken Language Identification (LID) that is based on the ContextNet architecture. TitaNet-LID employs 1D depth-wise separable convolutions and Squeeze-and-Excitation layers to effectively capture local and global context within an utterance. Despite its small size, TitaNet-LID achieves performance similar to state-of-the-art models on the VoxLingua107 dataset while being 10 times smaller.