Motion Policy Networks

Collision-free motion generation in unknown environments is a core building block for robot manipulation. Generating such motions is challenging due to multiple objectives; not only should the solutions be optimal, the motion generator itself must be fast enough for real-time performance and reliable enough for practical deployment. A wide variety of methods have been proposed ranging from local controllers to global planners, often being combined to offset their shortcomings.

CabiNet: Scaling Neural Collision Detection for Object Rearrangement with Procedural Scene Generation

We address the important problem of generalizing robotic rearrangement to clutter without any explicit object models. We first generate over 650K cluttered scenes— orders of magnitude more than prior work—in diverse everyday environments, such as cabinets and shelves. We render synthetic partial point clouds from this data and use it to train our CabiNet model architecture. CabiNet is a collision model that accepts object and scene point clouds, captured from a single-view depth observation, and predicts collisions for SE(3) object poses in the scene.

Enabling Scalable AI Computational Lithography with Physics-Inspired Models

Computational lithography is a critical research area for the continued scaling of semiconductor manufacturing process technology by enhancing silicon printability via numerical computing methods. Today's solutions for these problems are primarily CPU-based and require many thousands of CPUs running for days to tape out a modern chip. We seek AI/GPU-assisted solutions for the two problems, aiming at improving both runtime and quality.

Efficient Arithmetic Block Identification with Graph Learning and Network-flow

Arithmetic block identification in gate-level netlists plays an essential role for various purposes, including malicious logic detection, functional verification, or macro-block optimization. However, current methods usually suffer from either low performance or poor scalability. To address the issue, we come up with a novel framework based on graph learning and network flow analysis, that extracts desired logic components from a complete circuit netlist.

Physics-Informed Optical Kernel Regression Using Complex-valued Neural Fields

Lithography is fundamental to integrated circuit fabrication, necessitating large computation overhead. The advancement of machine learning (ML)-based lithography models alleviates the trade-offs between manufacturing process expense and capability. However, all previous methods regard the lithography system as an image-to-image black box mapping, utilizing network parameters to learn by rote mappings from massive mask-to-aerial or mask-to-resist image pairs, resulting in poor generalization capability.

Planning for Multi-Object Manipulation with Graph Neural Network Relational Classifiers

Objects rarely sit in isolation in human environments. As such, we'd like our robots to reason about how multiple objects relate to one another and how those relations may change as the robot interacts with the world. To this end, we propose a novel graph neural network framework for multi-object manipulation to predict how inter-object relations change given robot actions. Our model operates on partial-view point clouds and can reason about multiple objects dynamically interacting during the manipulation.

Shai Cohen

Shai has joined NVResearch on may 2023, before joining research, Shai acted an a Principle Architect in Nvidia CTO Office focused on Silicon Photonics, Advanced Packaging and Thermal management. Prior to that, at Mellanox (which was acquired by Nvidia) Shai has established and managed Mellanox “Phy architecture and algorithms” team to provide simulation tools, architectural definitions, and link tuning method for various products.

Shai Holds a double B.Sc in Physics and electrical engineering as well as an M.Sc in condensed matter Physics, from Tel-Aviv University. 

Neuralangelo: High-Fidelity Neural Surface Reconstruction

Neural surface reconstruction has been shown to be powerful for recovering dense 3D surfaces via image-based neural rendering. However, current methods struggle to recover detailed structures of real-world scenes. To address the issue, we present Neuralangelo, which combines the representation power of multi-resolution 3D hash grids with neural surface rendering. Two key ingredients enable our approach: (1) numerical gradients for computing higher-order derivatives as a smoothing operation and (2) coarse-to-fine optimization on the hash grids controlling different levels of details.