Robust and Controllable Object-Centric Learning through Energy-based Models

Humans are remarkably good at understanding and reasoning about complex visual scenes. The capability to decompose low-level observations into discrete objects allows us to build a grounded abstract representation and identify the compositional structure of the world. Accordingly, it is a crucial step for machine learning models to be capable of inferring objects and their properties from visual scenes without explicit supervision.

ML-based Fault Injection for Autonomous Vehicles: A Case for Bayesian Fault Injection

The safety and resilience of fully autonomous vehicles (AVs) are of significant concern, as exemplified by several headline-making accidents. While AV development today involves verification, validation, and testing, end-to-end assessment of AV systems under accidental faults in realistic driving scenarios has been largely unexplored. This paper presents DriveFI, a machine learning-based fault injection engine, which can mine situations and faults that maximally impact AV safety, as demonstrated on two industry-grade AV technology stacks (from NVIDIA and Baidu).

Kayotee: A Fault Injection-based System to Assess the Safety and Reliability of Autonomous Vehicles to Faults and Errors

Fully autonomous vehicles (AVs), i.e., AVs with autonomy level 5, are expected to dominate road transportation in the near-future and contribute trillions of dollars to the global economy. The general public, government organizations, and manufacturers all have significant concern regarding resiliency and safety standards of the autonomous driving system (ADS) of AVs .

ML-driven Malware that Targets AV Safety

Ensuring the safety of autonomous vehicles (AVs) is critical for their mass deployment and public adoption. However, security attacks that violate safety constraints and cause accidents are a significant deterrent to achieving public trust in AVs, and that hinders a vendor's ability to deploy AVs. Creating a security hazard that results in a severe safety compromise (for example, an accident) is compelling from an attacker's perspective.

Understanding Reduced-Voltage Operation in Modern DRAM Chips: Characterization, Analysis, and Mechanisms

The energy consumption of DRAM is a critical concern in modern computing systems. Improvements in manufacturing process technology have allowed DRAM vendors to lower the DRAM supply voltage conservatively, which reduces some of the DRAM energy consumption. We would like to reduce the DRAM supply voltage more aggressively, to further reduce energy. Aggressive supply voltage reduction requires a thorough understanding of the effect voltage scaling has on DRAM access latency and DRAM reliability.

Voltron: Understanding and Exploiting the Voltage-Latency-Reliability Trade-Offs in Modern DRAM Chips to Improve Energy Efficiency

This paper summarizes our work on experimental characterization and analysis of reduced-voltage operation in modern DRAM chips, which was published in SIGMETRICS 2017, and examines the work's significance and future potential.

Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks

Popular deep learning frameworks require users to fine-tune their memory usage so that the training data of a deep neural network (DNN) fits within the GPU physical memory. Prior work tries to address this restriction by virtualizing the memory usage of DNNs, enabling both CPU and GPU memory to be utilized for memory allocations. Despite its merits, virtualizing memory can incur significant performance overheads when the time needed to copy data back and forth from CPU memory is higher than the latency to perform the computations required for DNN forward and backward propagation.

What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Study

Main memory (DRAM) consumes as much as half of the total system power in a computer today, due to the increasing demand for memory capacity and bandwidth. There is a growing need to understand and analyze DRAM power consumption, which can be used to research new DRAM architectures and systems that consume less power. A major obstacle against such research is the lack of detailed and accurate information on the power consumption behavior of modern DRAM devices.

DeLTA: GPU Performance Model for Deep Learning Applications with In-depth Memory System Traffic Analysis

Training convolutional neural networks (CNNs) requires intense compute throughput and high memory bandwidth. Especially, convolution layers account for the majority of execution time of CNN training, and GPUs are commonly used to accelerate these layer workloads. GPU design optimization for efficient CNN training acceleration requires the accurate modeling of how their performance improves when computing and memory resources are increased.

SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have emerged as a fundamental technology for machine learning. High performance and extreme energy efficiency are critical for deployments of CNNs in a wide range of situations, especially mobile platforms such as autonomous vehicles, cameras, and electronic personal assistants.