VT-Refine: Learning Bimanual Assembly with Visuo-Tactile Feedback via Simulation Fine-Tuning

Humans excel at bimanual assembly tasks by adapting to rich tactile feedback—a capability that remains difficult to replicate in robots through behavioral cloning alone, due to the suboptimality and limited diversity of human demonstrations. In this work, we present VT-Refine, a visuo-tactile policy learning framework that combines real-world demonstrations, high-fidelity tactile simulation, and reinforcement learning to tackle precise, contact-rich bimanual assembly. We begin by training a diffusion policy on a small set of demonstrations using synchronized visual and tactile inputs.

Design of a Standard-Compliant Real-Time Neural Receiver for 5G NR

We detail the steps required to deploy a multi-user multiple-input multiple-output (MU-MIMO) neural receiver (NRX) in an actual cellular communication system. This raises several exciting research challenges, including the need for real-time inference and compatibility with the 5G NR standard. As the network configuration in a practical setup can change dynamically within milliseconds, we propose an adaptive NRX architecture capable of supporting dynamic modulation and coding scheme (MCS) configurations without the need for any re-training.

Learning Radio Environments by Differentiable Ray Tracing

Ray tracing (RT) is instrumental in 6G research in order to generate spatially-consistent and environment-specific channel impulse responses (CIRs). While acquiring accurate scene geometries is now relatively straightforward, determining material characteristics requires precise calibration using channel measurements. We therefore introduce a novel gradient-based calibration method, complemented by differentiable parametrizations of material properties, scattering and antenna patterns.

Sionna RT: Technical Report

Sionna is an open-source, GPU-accelerated library that, as of version 0.14, incorporates a ray tracer for simulating radio wave propagation. A unique feature of Sionna RT is differentiability, enabling the calculation of gradients for the channel impulse responses (CIRs), radio maps, and other related metrics with respect to system and environmental parameters, such as material properties, antenna patterns, and array geometries. The release of Sionna 1.0 provides a complete overhaul of the ray tracer, significantly improving its speed, memory efficiency, and extensibility.

SALAD: Self-Adaptive Link Adaptation

Adapting the modulation and coding scheme (MCS) to the wireless link quality is critical for maximizing spectral efficiency while ensuring reliability. 

We propose SALAD (self-adaptive link adaptation), an algorithm that exclusively leverages ACK/NACK feedback to reliably track the evolution of the signal-to-interference-plus-noise ratio (SINR), achieving high spectral efficiency while keeping the long-term block error rate (BLER) near a desired target. 

Sionna Research Kit: A GPU-Accelerated Research Platform for AI-RAN

We introduce the NVIDIA Sionna Research Kit, a GPU-accelerated research platform for developing and testing AI/ML algorithms in 5G NR cellular networks. 

Powered by the NVIDIA Jetson AGX Orin, the platform leverages accelerated computing to deliver high throughput and real-time signal processing, while offering the flexibility of a software-defined stack. 

Verification of Producer-Consumer Synchronization in GPU Programs

Previous efforts to formally verify code written for GPUs have focused solely on kernels written within the traditional data-parallel GPU programming model. No previous work has considered the higher performance, but more complex, warp-specialized kernels based on producer-consumer named barriers available on current hardware. In this work we present the first formal operational semantics for named barriers and define what it means for a warp-specialized kernel to be correct.

Pretraining codomain attention neural operators for solving multiphysics pdes

Existing neural operator architectures face challenges when solving multiphysics problems with coupled partial differential equations (PDEs) due to complex geometries, interactions between physical variables, and the limited amounts of high-resolution training data. To address these issues, we propose Codomain Attention Neural Operator (CoDA-NO), which tokenizes functions along the codomain or channel space, enabling self-supervised learning or pretraining of multiple PDE systems. Specifically, we extend positional encoding, self-attention, and normalization layers to function spaces.