A Dataset and Explorer for 3D Signed Distance Functions

Reference datasets are a key tool in the creation of new algorithms. They allow us to compare different existing solutions and identify problems and weaknesses during the development of new algorithms. The signed distance function (SDF) is enjoying a renewed focus of research activity in computer graphics, but until now there has been no standard reference dataset of such functions. We present a database of 63 curated, optimized, and regularized functions of varying complexity.

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes

Neural signed distance functions (SDFs) are emerging as an effective representation for 3D shapes. SDFs encode 3D surfaces with a function of position that returns the closest distance to a surface. State-of-the-art methods typically encode the SDF with a large, fixed-size neural network to approximate complex shapes with implicit surfaces. Rendering these large networks is, however, computationally expensive since it requires many forward passes through the network for every pixel, making these representations impractical for real-time graphics applications.

Variable Bitrate Neural Fields

Neural approximations of scalar and vector fields, such as signed distance functions and radiance fields, have emerged as accurate, high-quality representations. State-of-the-art results are obtained by conditioning a neural approximation with a lookup from trainable feature grids that take on part of the learning task and allow for smaller, more efficient neural networks. Unfortunately, these feature grids usually come at the cost of significantly increased memory consumption compared to stand-alone neural network models.

Unbiased and consistent rendering using biased estimators

We introduce a general framework for transforming biased estimators into unbiased and consistent estimators for the same quantity. We show how several existing unbiased and consistent estimation strategies in rendering are special cases of this framework, and are part of a broader debiasing principle. We provide a recipe for constructing estimators using our generalized framework and demonstrate its applicability by developing novel unbiased forms of transmittance estimation, photon mapping, and finite differences.

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

Can a generative model be trained to produce images from a specific domain, guided by a text prompt only, without seeing any image? In other words: can an image generator be trained "blindly"? Leveraging the semantic power of large scale Contrastive-Language-Image-Pre-training (CLIP) models, we present a text-driven method that allows shifting a generative model to new domains, without having to collect even a single image.

Detecting Viewer-Perceived Intended Vector Sketch Connectivity

Many sketch processing applications target precise vector drawings with accurately specified stroke intersections, yet free-form artist drawn sketches are typically inexact: strokes that are intended to intersect often stop short of doing so. While human observers easily perceive the artist intended stroke connectivity, manually, or even semi-manually, correcting drawings to generate correctly connected outputs is tedious and highly time consuming.



As-Locally-Uniform-as-Possible Reshaping of Vector Clip Art

Vector clip-art images consist of regions bounded by a network of vector curves. Users often wish to reshape, or rescale, existing clip-art images by changing the locations, proportions, or scales of different image elements. When reshaping images depicting synthetic content they seek to preserve global and local structures.

MatBuilder: Mastering Sampling Uniformity Over Projections

Many applications ranging from quasi-Monte Carlo integration over optimal control to neural networks benefit from high-dimensional, highly uniform samples. In the case of computer graphics,  and more particularly in rendering, despite the need for uniformity, several sub-problems expose a low-dimensional structure. In this context, mastering sampling uniformity over projections while preserving high-dimensional uniformity has been intrinsically challenging. This difficulty may explain the relatively small number of mathematical constructions for such samplers. We pr

Holographic Glasses for Virtual Reality

Ultra-thin (2.5 mm) glasses-form factor VR display supporting 3D holographic images