Training deep neural networks to estimate the viewpoint of objects requires large labeled training datasets. However, manually labeling viewpoints is notoriously hard, error-prone, and time-consuming. On the other hand, it is relatively easy to mine many unlabeled images of an object category from the internet, e.g., of cars or faces. We seek to answer the research question of whether such unlabeled collections of in-the-wild images can be successfully utilized to train viewpoint estimation networks for general object categories purely via self-supervision.