6-DOF Grasping for Target-driven Object Manipulation in Clutter

Grasping in cluttered environments is a fundamental but challenging robotic skill. It requires both reasoning about unseen object parts and potential collisions with the manipulator. Most existing data-driven approaches avoid this problem by limiting themselves to top-down planar grasps which is insufficient for many real-world scenarios and greatly limits possible grasps. We present a method that plans 6-DOF grasps for any desired object in a cluttered scene from partial point cloud observations.

Post-Render Warp with Late Input Sampling Improves Aiming Under High Latency Conditions

End-to-end latency in remote-rendering systems can reduce user task performance. This notably includes aiming tasks on game streaming services, which are presently below the standards of competitive first-person desktop gaming. We evaluate the latency-induced penalty on task completion time in a controlled environment and show that it can be significantly mitigated by adopting and modifying image and simulation-warping techniques from virtual reality, eliminating up to 80\% of the penalty from 80 ms of added latency.

Understanding SSIM

The use of the structural similarity index (SSIM) is widespread. For almost two decades, it has played a major role in image quality assessment in many different research disciplines. Clearly, its merits are indisputable in the research community. However, little deep scrutiny of this index has been performed. Contrary to popular belief, there are some interesting properties of SSIM that merit such scrutiny. In this paper, we analyze the mathematical factors of SSIM and show that it can generate results, in both synthetic and realistic use cases, that are unexpected, sometimes undefine

Point Set Registration: Coherent Point Drift

Point set registration is a key component in many computer vision tasks. The goal of point set registration is to assign correspondences between two sets of points and to recover the transformation that maps one point set to the other. Multiple factors, including an unknown nonrigid spatial transformation, large dimensionality of point set, noise, and outliers, make the point set registration a challenging problem. We introduce a probabilistic method, called the Coherent Point Drift (CPD) algorithm, for both rigid and nonrigid point set registration.

3D MRI Brain Tumor Segmentation Using Autoencoder Regularization

Automated segmentation of brain tumors from 3D magnetic resonance images (MRIs) is necessary for the diagnosis, monitoring, and treatment planning of the disease. Manual delineation practices require anatomical knowledge, are expensive, time consuming and can be inaccurate due to human error. Here, we describe a semantic segmentation network for tumor subregion segmentation from 3D MRIs based on encoder-decoder architecture.

Training Generative Adversarial Networks with Limited Data

Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limited data regimes. The approach does not require changes to loss functions or network architectures, and is applicable both when training from scratch and when fine-tuning an existing GAN on another dataset.

MVLidarNet: Real-Time Multi-Class Scene Understanding for Autonomous Driving Using Multiple Views

Autonomous driving requires the inference of actionable information such as detecting and classifying objects, and determining the drivable space. To this end, we present a two-stage deep neural network (MVLidarNet) for multi-class object detection and drivable segmentation using multiple views of a single LiDAR point cloud. The first stage processes the point cloud projected onto a perspective view in order to semantically segment the scene.

DexPilot: Vision Based Teleoperation of Dexterous Robotic Hand-Arm System

Teleoperation offers the possibility of imparting robotic systems with sophisticated reasoning skills, intuition, and creativity to perform tasks. However, current teleoperation solutions for high degree-of-actuation (DoA), multi-fingered robots are generally cost-prohibitive, while low-cost offerings usually provide reduced degrees of control. Herein, a low-cost, vision based teleoperation system, DexPilot, was developed that allows for complete control over the full 23 DoA robotic system by merely observing the bare human hand.

The NVIDIA GeForce 8800 GPU

This article consists of a collection of slides from the author's conference presentation on NVIDIA's GeForce 8800 GPU. Some of the specific topics discussed include: an overview of the GeForce 8800 architecture; streaming processor array and processing capabilities; the Raster Operation Pipeline; and GeForce implementation, deployment, and performance evaluation.

Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting

Efficiently rendering direct lighting from millions of dynamic light sources using Monte Carlo integration remains a challenging problem, even for off-line rendering systems. We introduce a new algorithm—ReSTIR—that renders such lighting interactively, at high quality, and without needing to maintain complex data structures. We repeatedly resample a set of candidate light samples and apply further spatial and temporal resampling to leverage information from relevant nearby samples.