An Adaptive Acceleration Structure for Screen-space Ray Tracing
We propose an efficient acceleration structure for real-time screen-space ray tracing. The hybrid data structure represents the scene geometry by combining a bounding volume hierarchy with local planar approximations. This enables fast empty space skipping while tracing and yields exact intersection points for the planar approximation. In combination with an occlusion-aware ray traversal our algorithm is capable to quickly trace even multiple depth layers. Compared to prior work, our technique improves the accuracy of the results, is more general, and allows for advanced image transformations, as all pixels can cast rays to arbitrary directions. We demonstrate real-time performance for several applications, including depth-of-field rendering, stereo warping, and screen-space ray traced reflections.
Publication Date
Published in
Research Area
External Links
Uploaded Files
Copyright
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than Eurographics must be honored.