RaySt3R: Predicting Novel Depth Maps for Zero-Shot Object Completion

3D shape completion has broad applications in robotics, digital twin reconstruction, and extended reality (XR). Although recent advances in 3D object and scene completion have achieved impressive results, existing methods lack 3D consistency, are computationally expensive, and struggle to capture sharp object boundaries. Our work (RaySt3R) addresses these limitations by recasting 3D shape completion as a novel view synthesis problem.

FoundationStereo: Zero-Shot Stereo Matching

Tremendous progress has been made in deep stereo matching to excel on benchmark datasets through per-domain fine-tuning. However, achieving strong zero-shot generalization - a hallmark of foundation models in other computer vision tasks - remains challenging for stereo matching. We introduce FoundationStereo, a foundation model for stereo depth estimation designed to achieve strong zero-shot generalization.

RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics

Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding.

SPOT: SE(3) Pose Trajectory Diffusion for Object-Centric Manipulation

We introduce SPOT, an object-centric imitation learning framework. The key idea is to capture each task by an object-centric representation, specifically the SE(3) object pose trajectory relative to the target. This approach decouples embodiment actions from sensory inputs, facilitating learning from various demonstration types, including both action-based and action-less human hand demonstrations, as well as cross-embodiment generalization. Additionally, object pose trajectories inherently capture planning constraints from demonstrations without the need for manually-crafted rules.

Lightning-Fast Image Inversion and Editing for Text-to-Image Diffusion Models,

Diffusion inversion is the problem of taking an image and a text prompt that describes it and finding a noise latent that would generate the exact same image. Most current deterministic inversion techniques operate by approximately solving an implicit equation and may converge slowly or yield poor reconstructed images. We formulate the problem by finding the roots of an implicit equation and devlop a method to solve it efficiently. Our solution is based on Newton-Raphson (NR), a well-known technique in numerical analysis.

Add-it: Training-Free Object Insertion in Images via Pretrained Diffusion Models

Adding Object into images based on text instructions is a challenging task in semantic image editing, requiring a balance between preserving the original scene and seamlessly integrating the new object in a fitting location. Despite extensive efforts, existing models often struggle with this balance, particularly with finding a natural location for adding an object in complex scenes.

RL-RC-DoT: A Block-level RL agent for Task-Aware Video Compression

Video encoders optimize compression for human perception by minimizing reconstruction error under bit-rate constraints. In many modern applications such as autonomous driving, an overwhelming majority of videos serve as input for AI systems performing tasks like object recognition or segmentation, rather than being watched by humans. It is therefore useful to optimize the encoder for a downstream task instead of for perceptual image quality.

Adapting to the Unknown: Training-Free Audio-Visual Event Perception with Dynamic Thresholds

Abstract: In the domain of audio-visual event perception, which focuses on the temporal localization and classification of events across distinct modalities (audio and visual), existing approaches are constrained by the vocabulary available in their training data. This limitation significantly impedes their capacity to generalize to novel, unseen event categories. Furthermore, the annotation process for this task is labor-intensive, requiring extensive manual labeling across modalities and temporal segments, limiting the scalability of current methods.

Make It Count: Text-to-Image Generation with an Accurate Number of Objects

Despite the unprecedented success of text-to-image diffusion models, controlling the number of depicted objects using text is surprisingly hard. This is important for various applications from technical documents, to children's books to illustrating cooking recipes. Generating object-correct counts is fundamentally challenging because the generative model needs to keep a sense of separate identity for every instance of the object, even if several objects look identical or overlap, and then carry out a global computation implicitly during generation.

TriTex: Learning Texture from a Single Mesh via Triplane Semantic Features

As 3D content creation continues to grow, transferring semantic textures between 3D meshes remains a significant challenge in computer graphics. While recent methods leverage text-to-image diffusion models for texturing, they often struggle to preserve the appearance of the source texture during texture transfer. We present TRITEX, a novel approach that learns a volumetric texture field from a single textured mesh by mapping semantic features to surface colors. Using an efficient triplane-based architecture, our method enables semantic-aware texture transfer to a novel target mesh.