XT-PRAGGMA: Crosstalk Pessimism Reduction Accessible by GPU Gate-level Simulations and Machine Learning

Accurate crosstalk-aware timing analysis is critical in nanometer-scale process nodes. While today's VLSI flows rely on static timing analysis (STA) techniques to perform crosstalk-aware timing signoff, these techniques are limited due to their static nature as they use imprecise heuristics such as arbitrary aggressor filtering and simplified delay calculations. This paper proposes XT-PRAGGMA, a tool that uses GPU-accelerated dynamic gate-level simulations and machine learning to eliminate false aggressors and accurately predict crosstalk-induced delta delays.

Efficient Geometry-aware 3D Generative Adversarial Networks

Unsupervised generation of high-quality multi-view-consistent images and 3D shapes using only collections of single-view 2D photographs has been a long-standing challenge. Existing 3D GANs are either compute-intensive or make approximations that are not 3D-consistent; the former limits quality and resolution of the generated images and the latter adversely affects multi-view consistency and shape quality. In this work, we improve the computational efficiency and image quality of 3D GANs without overly relying on these approximations.

Towards Selecting Robust Hand Gestures for Automotive Interfaces

Driver distraction is a serious threat to automotive safety. The visual-manual interfaces in cars are a source of distraction for drivers. Automotive touch-less hand gesture-based user interfaces can help to reduce driver distraction and enhance safety and comfort. The choice of hand gestures in automotive interfaces is central to their success and widespread adoption. In this work we evaluate the recognition accuracy of 25 different gestures for state-of-the-art computer vision-based gesture recognition algorithms and for human observers.

FreeSOLO: Learning to Segment Objects without Annotations

Instance segmentation is a fundamental vision task that aims to recognize and segment each object in an image. However, it requires costly annotations such as bounding boxes and segmentation masks for learning. In this work, we propose a fully unsupervised learning method that learns class-agnostic instance segmentation without any annotations. We present FreeSOLO, a self-supervised instance segmentation framework built on top of the simple instance segmentation method SOLO.

GroupViT: Semantic Segmentation Emerges from Text Supervision

Grouping and recognition are important components of visual scene understanding, e.g., for object detection and semantic segmentation. With end-to-end deep learning systems, grouping of image regions usually happens implicitly via top-down supervision from pixel-level recognition labels. Instead, in this paper, we propose to bring back the grouping mechanism into deep networks, which allows semantic segments to emerge automatically with only text supervision.

Ifor: Iterative flow minimization for robotic object rearrangement

Accurate object rearrangement from vision is a crucial problem for a wide variety of real-world robotics applications in unstructured environments. We propose IFOR, Iterative Flow Minimization for Robotic Object Rearrangement, an end-to-end method for the challenging problem of object rearrangement for unknown objects given an RGBD image of the original and final scenes. First, we learn an optical flow model based on RAFT to estimate the relative transformation of the objects purely from synthetic data.

Neural FFTs for Universal Texture Image Synthesis

Synthesizing larger texture images from a smaller exemplar is an important task in graphics and vision. The conventional CNNs, recently adopted for synthesis, require to train and test on the same set of images and fail to generalize to unseen images. This is mainly because those CNNs fully rely on convolutional and upsampling layers that operate locally and not suitable for a task as global as texture synthesis.