Research Labs
All Research Labs
3D Deep Learning
Applied Research
Autonomous Vehicles
Deep Imagination
Publications
AI Playground
New and Featured
AI Art Gallery
NGC Demos
Research Areas
AI & Machine Learning
3D Deep Learning
Computer Vision
Robotics
All Areas
Careers
Academic Collaborations
Government Collaborations
Graduate Fellowship
Internships
Research Openings
Research Scientists
Meet the Team
Licensing
Skip to main content
Publications
Our publications provide insight into some of our leading-edge research.
Filters
Search
Apply
Filters
Filters
Publication Year
2024
(5)
2023
(2)
2022
(9)
2021
(2)
2020
(2)
2019
(3)
2018
(1)
2017
(5)
2016
(1)
Facet Publication Year
Research Areas
Algorithms and Numerical Methods
(30)
Artificial Intelligence and Machine Learning
(30)
Computer Graphics
(5)
High Performance Computing
(5)
Telecommunications
(5)
Circuits and VLSI Design
(4)
Real-Time Rendering
(2)
Robotics
(2)
Events
CORL
(1)
CVPR
(1)
ICLR
(1)
ICML
(1)
NeurIPS
(1)
SIGGRAPH
(1)
30 results found
Algorithms and Numerical Methods
Artificial Intelligence and Machine Learning
Clear all
Algorithms and Numerical Methods
Artificial Intelligence and Machine Learning
2024
scene_synthesizer: A Python Library for Procedural Scene Generation in Robot Manipulation
Clemens Eppner
,
Adithya Murali
,
Caelan Garrett
,
Rowland O'Flaherty
,
Tucker Hermans
,
Wei Yang
,
Dieter Fox
Differentiable GPU-Parallelized Task and Motion Planning
William Shen,
Caelan Garrett
,
Ankit Goyal
,
Tucker Hermans
,
Fabio Ramos
CORL
Constructability-driven design of frame structures with state-space search methods
Yijiang Huang,
Caelan Garrett
, Caitlin Mueller
Conformer without Convolutions
Matthijs Van keirsbilck
,
Alex Keller
Improving Hyperparameter Optimization with Checkpointed Model Weights
Nikhil Mehta, Jonathan Lorraine, Steve Masson, Ramanathan Arunachalam, Zaid Pervaiz Bhat, James Lucas, Arun George Zachariah
2023
Graph Metanetworks for Processing Diverse Neural Architectures
Derek Lim,
Haggai Maron
, Marc T. Law, Jonathan Lorraine, James Lucas
ICLR
Graph Neural Networks for Enhanced Decoding of Quantum LDPC Codes
Anqi Gong,
Sebastian Cammerer
, Joseph M. Renes
2022
Deep Learning-Based Synchronization for Uplink NB-IoT
Fayçal Aït Aoudia
,
Jakob Hoydis
,
Sebastian Cammerer
,
Matthijs Van keirsbilck
,
Alex Keller
Graph Neural Networks for Channel Decoding
Sebastian Cammerer
,
Jakob Hoydis
,
Fayçal Aït Aoudia
,
Alex Keller
Unbiased Inverse Volume Rendering With Differential Trackers
Merlin Nimier-David,
Thomas Müller
,
Alex Keller
, Wenzel Jakob
Optimal Clipping and Magnitude-aware Differentiation for Improved Quantization-aware Training
Charbel Sakr
,
Steve Dai
,
Rangharajan Venkatesan
,
Brian Zimmer
,
Brucek Khailany
,
William Dally
ICML
Adaptive Neural Network-based OFDM Receivers
Moritz Benedikt Fischer, Sebastian Dörner,
Sebastian Cammerer
, Takayuki Shimizu, Hongsheng Lu, Stephan ten Brink
MatBuilder: Mastering Sampling Uniformity Over Projections
Loïs Paulin, Nicolas Bonneel, David Coeurjolly, Jean-Claude Iehl,
Alex Keller
, Victor Ostromoukhov
SIGGRAPH
Artificial Neural Networks generated by Low Discrepancy Sequences
Matthijs Van keirsbilck
,
Alex Keller
Sionna: An Open-Source Library for Next-Generation Physical Layer Research
Jakob Hoydis
,
Sebastian Cammerer
,
Fayçal Aït Aoudia
, Avinash Vem,
Nikolaus Binder
,
Guillermo Marcus
,
Alex Keller
Generic Lithography Modeling with Dual-band Optics-Inspired Neural Networks
Haoyu Yang
, Zongyi Li, Kumara Sastry, Saumyadip Mukhopadhyay,
Mark Kilgard
, Anima Anandkumar,
Brucek Khailany
, Vivek Singh,
Haoxing (Mark) Ren
2021
Graph Learning-Based Arithmetic Block Identification
Zhuolun He, Ziyi Wang, Chen Bai,
Haoyu Yang
, Bei Yu
Compressing 1D Time-Channel Separable Convolutions using Sparse Random Ternary Matrices
Goncalo Mordido,
Matthijs Van keirsbilck
,
Alex Keller
2020
DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Placement
Yibo Lin, Zixuan Jiang, Jiaqi Gu, Wuxi Li, Shounak Dhar,
Haoxing (Mark) Ren
,
Brucek Khailany
, David Z. Pan
2021 IEEE Transactions on Computer-Aided Design Donald O. Pederson Best Paper Award
Monte Carlo Gradient Quantization
Goncalo Mordido,
Matthijs Van keirsbilck
,
Alex Keller
CVPR
2019
Instant Quantization of neural networks using Monte Carlo Methods
Gonçalo Mordido,
Matthijs Van keirsbilck
,
Alex Keller
NeurIPS
DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Placement
Yibo Lin, Shounak Dhar, Wuxi Li,
Haoxing (Mark) Ren
,
Brucek Khailany
, David Z. Pan
DAC 2019 Best Paper Award
Rethinking full connectivity in recurrent neural networks
Matthijs Van keirsbilck
,
Alex Keller
, Xiaodong Yang
2018
Machine Learning and Rendering
Alex Keller
, Jaroslav Křivánek, Jan Novák, Anton Kaplanyan,
Marco Salvi
2017
Parallel Complexity of Forward and Backward Propagation
Maxim Naumov
Integral Equations and Machine Learning
Alex Keller
, Ken Dahm
AdaBatch: Adaptive Batch Sizes for Training Deep Neural Networks
Aditya Devarakonda, Maxim Naumov,
Michael Garland
Parallel Jaccard and Related Graph Clustering Techniques
Alexandre Fender, Nahid Emad, Serge Petiton, Joe Eaton, Maxim Naumov
Parallel Modularity Clustering
Alexandre Fender, Nahid Emad, Serge Petiton, Maxim Naumov
2016
Parallel Spectral Graph Partitioning
Maxim Naumov, Timothy Moon