Detecting other agents and forecasting their behavior is an integral part of the modern robotic autonomy stack, especially in safety-critical scenarios entailing human-robot interaction such as autonomous driving. Due to the importance of these components, there has been a significant amount of interest and research in perception and trajectory forecasting, resulting in a wide variety of approaches. Common to most works, however, is the use of the same few accuracy-based evaluation metrics, e.g., intersection-over-union, displacement error, log-likelihood, etc.