Blue noise error patterns are well suited to human perception, and when applied to stochastic rendering techniques, blue noise masks can minimize unwanted low-frequency noise in the final image. Current methods of applying different blue noise masks to each rendered frame result in either white noise frequency spectra temporally, and thus poor convergence and stability, or lower quality spatially. We propose novel blue noise masks that retain high quality blue noise spatially, yet when animated produce values at each pixel that are well distributed over time.