What Your DRAM Power Models Aren’t Telling You: Lessons from a Detailed Experimental Study

Main memory (DRAM) consumes as much as half of the total system power in a computer today, due to the increasing demand for memory capacity and bandwidth. There is a growing need to understand and analyze DRAM power consumption, which can be used to research new DRAM architectures and systems that consume less power. A major obstacle against such research is the lack of detailed and accurate information on the power consumption behavior of modern DRAM devices.

PyTorchFI: A Runtime Perturbation Tool for DNNs

PyTorchFI is a runtime perturbation tool for deep neural networks (DNNs), implemented for the popular PyTorch deep learning platform. PyTorchFI enables users to perform perturbations on weights or neurons of DNNs at runtime. It is designed with the programmer in mind, providing a simple and easy-to-use API, requiring as little as three lines of code for use.

Neural Denoising with Layer Embeddings

We propose a novel approach for denoising Monte Carlo path traced images, which uses data from individual samples rather than relying on pixel aggregates. Samples are partitioned into layers, which are filtered separately, giving the network more freedom to handle outliers and complex visibility. Finally the layers are composited front-to-back using alpha blending. The system is trained end-to-end, with learned layer partitioning, filter kernels, and compositing.

LAMP: Large Deep Nets with Automated Model Parallelism for Image Segmentation

Deep Learning (DL) models are becoming larger, because the increase in model size might offer significant accuracy gain. To enable the training of large deep networks, data parallelism and model parallelism are two well-known approaches for parallel training. However, data parallelism does not help reduce memory footprint per device. In this work, we introduce Large deep 3D ConvNets with Automated Model Parallelism (LAMP) and investigate the impact of both input's and deep 3D ConvNets' size on segmentation accuracy.

6-DOF Grasping for Target-driven Object Manipulation in Clutter

Grasping in cluttered environments is a fundamental but challenging robotic skill. It requires both reasoning about unseen object parts and potential collisions with the manipulator. Most existing data-driven approaches avoid this problem by limiting themselves to top-down planar grasps which is insufficient for many real-world scenarios and greatly limits possible grasps. We present a method that plans 6-DOF grasps for any desired object in a cluttered scene from partial point cloud observations.

Post-Render Warp with Late Input Sampling Improves Aiming Under High Latency Conditions

End-to-end latency in remote-rendering systems can reduce user task performance. This notably includes aiming tasks on game streaming services, which are presently below the standards of competitive first-person desktop gaming. We evaluate the latency-induced penalty on task completion time in a controlled environment and show that it can be significantly mitigated by adopting and modifying image and simulation-warping techniques from virtual reality, eliminating up to 80\% of the penalty from 80 ms of added latency.

Understanding SSIM

The use of the structural similarity index (SSIM) is widespread. For almost two decades, it has played a major role in image quality assessment in many different research disciplines. Clearly, its merits are indisputable in the research community. However, little deep scrutiny of this index has been performed. Contrary to popular belief, there are some interesting properties of SSIM that merit such scrutiny. In this paper, we analyze the mathematical factors of SSIM and show that it can generate results, in both synthetic and realistic use cases, that are unexpected, sometimes undefine

Point Set Registration: Coherent Point Drift

Point set registration is a key component in many computer vision tasks. The goal of point set registration is to assign correspondences between two sets of points and to recover the transformation that maps one point set to the other. Multiple factors, including an unknown nonrigid spatial transformation, large dimensionality of point set, noise, and outliers, make the point set registration a challenging problem. We introduce a probabilistic method, called the Coherent Point Drift (CPD) algorithm, for both rigid and nonrigid point set registration.

3D MRI Brain Tumor Segmentation Using Autoencoder Regularization

Automated segmentation of brain tumors from 3D magnetic resonance images (MRIs) is necessary for the diagnosis, monitoring, and treatment planning of the disease. Manual delineation practices require anatomical knowledge, are expensive, time consuming and can be inaccurate due to human error. Here, we describe a semantic segmentation network for tumor subregion segmentation from 3D MRIs based on encoder-decoder architecture.

Training Generative Adversarial Networks with Limited Data

Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limited data regimes. The approach does not require changes to loss functions or network architectures, and is applicable both when training from scratch and when fine-tuning an existing GAN on another dataset.