MoCoGAN: Decomposing Motion and Content for Video Generation

Visual signals in a video can be divided into content and motion. While content specifies which objects are in the video, motion describes their dynamics. Based on this prior, we propose the Motion and Content decomposed Generative Adversarial Network (MoCoGAN) framework for video generation. The proposed framework generates a video by mapping a sequence of random vectors to a sequence of video frames. Each random vector consists of a content part and a motion part. While the content part is kept fixed, the motion part is realized as a stochastic process.

IamNN: Iterative and Adaptive Mobile Neural Network for Efficient Image Classification

Deep residual networks (ResNets) made a recent breakthrough in deep learning. The core idea of ResNets is to have shortcut connections between layers that allow the network to be much deeper while still being easy to optimize avoiding vanishing gradients. These shortcut connections have interesting side-effects that make ResNets behave differently from other typical network architectures. In this work we use these properties to design a network based on a ResNet but with parameter sharing and with adaptive computation time.

Separating Reflection and Transmission Images in the Wild

The reflections caused by common semi-reflectors, such as glass windows, can impact the performance of computer vision algorithms. State-of-the-art methods can remove reflections on synthetic data and in controlled scenarios. However, they are based on strong assumptions and do not generalize well to real-world images. Contrary to a common misconception, real-world images are challenging even when polarization information is used.

Tackling 3D ToF Artifacts Through Learning and the FLAT Dataset

Scene motion, multiple reflections, and sensor noise introduce artifacts in the depth reconstruction performed by time-of-flight (ToF) cameras.

We propose a two-stage, deep-learning approach to address all of these sources of artifacts simultaneously.

We also introduce FLAT, a synthetic dataset of 2000 ToF measurements that capture all of these nonidealities, and allows to simulate different camera hardware. Using the Kinect 2 camera as a baseline, we show improved reconstruction errors over state-of-the-art methods, on both simulated and real data.

Approximate svBRDF Estimation From Mobile Phone Video

We describe a new technique for obtaining a spatially varying BRDF (svBRDF) of a flat object using printed fiducial markers and a cell phone capable of continuous flash video. Our homography-based video frame alignment method does not require the fiducial markers to be visible in every frame, thereby enabling us to capture larger areas at a closer distance and higher resolution than in previous work.

Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation

Given two consecutive frames, video interpolation aims at generating intermediate frame(s) to form both spatially and temporally coherent video sequences. While most existing methods focus on single-frame interpolation, we propose an end-to-end convolutional neural network for variable-length multi-frame video interpolation, where the motion interpretation and occlusion reasoning are jointly modeled. We start by computing bi-directional optical flow between the input images using a U-Net architecture.

Charles Loop

Charles Loop is a Principal Research Scientist in the Learning & Perception Research group with NVIDIA Research. Charles is the inventor of Loop Subdivision, a geometric modeling algorithm used for creating smooth shapes for use in medical imaging, special effects, and video games. He was recently awarded a Technical Achievement Award from The Academy of Motion Picture Arts and Science for this work.