Modeling Soft Error Propagation in Programs

As technology scales to lower feature sizes, devices become more susceptible to soft errors. Soft errors can lead to silent data corruptions (SDCs), seriously compromising the reliability of a system. Traditional hardware-only techniques to avoid SDCs are energy hungry, and hence not suitable for commodity systems. Researchers have proposed selective software-based protection techniques to tolerate hardware faults at lower costs.

Riemannian Motion Policies

A new mathematical framework called Riemannian Motion Policies (RMPs) shapes a robot’s behavior. We derive optimal and practical tools for intuitively constructing policies, demonstrate the framework’s flexibility for distributed computation, use it to unify many previously distinct motion generation techniques, and demonstrate its performance on three dual arm manipulation platforms in both simulation and reality.

A Variable Shape and Variable Stiffness Controller for Haptic Virtual Interactions

This paper presents an entirely compliant controller handle for use in virtual and augmented reality environments. The controller handle transitions between two static states: a semi-rigid, large diameter state when pneumatically pressurized and a soft, compressible, smaller diameter state when depressurized. We integrated the controller with a modified version of NVIDIA’s VR Funhouse employing the two controller states to simulate the physical feel of two virtual objects.

2002 Grad Fellows

Congratulations to the recipients of the 2002 International Graduate Fellowship Award. Thank you to all of you who applied and to the professors that nominated you. We truly appreciate your interest in NVIDIA and our Graduate Fellowship Program.

It was extremely difficult to select the 2002 Graduate Fellowship recipients this year. All of the research projects were very exciting to us, and we understand the dedication and commitment required to pursue new ideas on the cutting edge of research.

Reblur2Deblur: Deblurring Videos via Self-Supervised Learning

Motion blur is a fundamental problem in computer vision as it impacts image quality and hinders inference. Traditional deblurring algorithms leverage the physics of the image formation model and use hand-crafted priors: they usually produce results that better reflect the underlying scene, but present artifacts. Recent learning-based methods implicitly extract the distribution of natural images directly from the data and use it to synthesize plausible images. Their results are impressive, but they are not always faithful to the content of the latent image.

Geometry-Aware Learning of Maps for Camera Localization

Maps are a key component in image-based camera localization and visual SLAM systems: they are used to establish geometric constraints between images, correct drift in relative pose estimation, and relocalize cameras after lost tracking. The exact definitions of maps, however, are often application-specific and hand-crafted for different scenarios (e.g., 3D landmarks, lines, planes, bags of visual words). We propose to represent maps as a deep neural net called MapNet, which enables learning a data-driven map representation.

Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks

Popular deep learning frameworks require users to fine-tune their memory usage so that the training data of a deep neural network (DNN) fits within the GPU physical memory. Prior work tries to address this restriction by virtualizing the memory usage of DNNs, enabling both CPU and GPU memory to be utilized for memory allocations. Despite its merits, virtualizing memory can incur significant performance overheads when the time needed to copy data back and forth from CPU memory is higher than the latency to perform DNN computations.

Reducing Data Transfer Energy by Exploiting Similarity within a Data Transaction

Modern highly parallel GPU systems require high-bandwidth DRAM I/O interfaces that can consume a significant amount of energy. This energy increases in proportion to the number of '1' values in the data transactions due to the asymmetric energy consumption of Pseudo Open Drain (POD) I/O interfaces in contemporary Graphics DDR SDRAMs. In this work, we describe a technique to save energy by reducing the energy-expensive '1' values in the DRAM interface. We observe that multiple data elements within a single cache line/sector are often similar to one another.

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume

We present a compact but effective CNN model for optical flow, called PWC-Net. PWC-Net has been designed according to simple and well-established principles: pyramidal processing, warping, and the use of a cost volume. Cast in a learnable feature pyramid, PWC-Net uses the current optical flow estimate to warp the CNN features of the second image. It then uses the warped features and features of the first image to construct the cost volume, which is processed by a CNN to estimate the optical flow. PWCNet is 17 times smaller in size and easier to train than the recent FlowNet2 model.

Matthijs Van keirsbilck

Matthijs is a Research Scientist at NVIDIA, working on foundations of neural networks and machine learning.

He has a broad field of interest, and is currently working on efficient neural network architecture design, leveraging structural sparsity and quantization.

He has a background in Electrical Engineering, studying at KU Leuven (Belgium) and TU Munich (Germany).